Лайфхаки        16.11.2022   

Телевидение развитие средств связи презентация. Презентация на тему "радиосвязь". Мая – день радио





Телевидение - область науки, техники и культуры, связанная с передачей зрительной информации (подвижных изображений) на расстояние радиоэлектронными средствами; собственно способ такой передачи. Наряду с радиовещанием телевидение - одно из наиболее массовых средств распространения информации и одно из основных средств связи, используемое в научных, организационных, технических и др. прикладных целях. Конечным звеном телевизионной передачи служит человеческий глаз, поэтому телевизионные системы строятся с учётом особенностей зрения. Реальный мир воспринимается человеком визуально в цветах, предметы - рельефными, расположенными в объёме некоторого пространства, а события в динамике, движении: следовательно, идеальная телевизионная система должна обеспечивать возможность воспроизводить эти свойства материального мира. В современном телевидении задачи передачи движения и цвета успешно решены. На стадии испытаний находятся телевизионные системы, способные воспроизводить рельефность предметов и глубину пространства.


Телевизионный приём кинескопом В телевизоре имеется электронно-лучевая с магнитным управлением, называемая кинескопом. В кинескопе электронная пушка создает электронный пучок, который фокусируется на экране, покрытом кристаллами, способными светиться под ударами быстро движущихся электронов. На пути к экрану электроны пролетают через магнитные поля двух пар катушек, расположенных снаружи трубки. Передача телевизионных сигналов в любую точку нашей страны обеспечивается с помощью ретрансляционных искусственных спутников Земли в системе «Орбита».


Антенна телевизионного приемника принимает излучаемые антенной телевизионного передатчика ультракороткие волны, модулированные сигналами передаваемого изображения. Для получения в приемнике более сильных сигналов и уменьшения различных помех, как правило, делается специальная приемная телевизионная антенна. В простейшем случае она представляет собой так называемый полуволновый вибратор, или диполь, т. е. металлический стержень длиной немного менее половины длины волны, расположенный горизонтально под прямым углом к направлению на телецентр. Принятые сигналы усиливаются, детектируются и снова усиливаются подобно тому, как это делается в обычных приемниках для приема звукового радиовещания. Особенностью телевизионного приемника, который может быть прямого усиления или супергетеродинного типа, является то, что он рассчитан на прием ультракоротких волн. Напряжение и ток сигналов изображения, полученных в результате усиления после детектора, повторяют все изменения тока, производившего модуляцию на телевизионном передатчике. Иначе говоря, сигнал изображения в приемнике точно отображает повторяющуюся 25 раз в секунду последовательную передачу отдельных элементов передаваемого объекта. Сигналы изображения воздействуют на приемную телевизионную трубку, которая является главной частью телевизора. Как происходит телевизионный прием?


Применение электронно-лучевой трубки для приема телевизионных изображений было предложено профессором Петербургского технологического института Б. Л. Розингом еще в 1907 году и обеспечило дальнейшее развитие высококачественного телевидения. Именно Борис Львович Розинг своими работами заложил основы современного телевидения.


Кинескоп Кинескоп - электронно-лучевой прибор, преобразующий электрические сигналы в световые. Основные части: 1) электронная пушка, предназначена для формирования электронного луча, в цветных кинескопах и многолучевых осциллографических трубках объединяются в электронно- оптический прожектор; 2) экран, покрытый люминофором веществом, светящимся при попадании на него пучка электронов; 3) отклоняющая система, управляет лучом таким образом, что он формирует требуемое изображение.


Исторически телевидение развивалось начиная с передачи только яркостной характеристики каждого элемента изображения. В черно-белом телевизоре яркостный сигнал на выходе передающей трубки подвергается усилению и преобразованию. Каналом связи служит радиоканал или кабельный канал. В приёмном устройстве принятые сигналы преобразуются в однолучевом кинескопе, экран которого покрыт люминофором белого свечения.


1)Электронные пушки 2)Электронные лучи 3)Фокусирующая катушка 4)Отклоняющие катушки 5)Анод 6)Маска, благодаря которой красный луч попадает на красный люминофор, и т. д. 7)Красные, зелёные и синие зёрна люминофора 8)Маска и зёрна люминофора (увеличено). Устройство цветного кинескопа


Красного синего зеленого Передача и прием цветных изображений требуют применения более сложных телевизионных систем. Вместо одной падающей трубки требуется применять три трубки, передающие сигналы трех одноцветных изображений - красного, синего и зеленого цвета. красного зелёного синего синимкраснымзелёным Экран кинескопа цветного телевизора покрыт кристаллами люминофоров трех сортов. Эти кристаллы расположены в отдельных ячейках на экране в строгом порядке. На экране цветного телевизора три пучка создают одновременно три изображения красного, зелёного, и синего цвета. Наложение этих изображений, состоящих из маленьких светящих участков, воспринимается глазом человека как многоцветное изображение со всеми оттенками цветов. Одновременно свечение кристаллов в одном месте синим, красным и зелёным цветом воспринимается глазом как белый цвет, поэтому на экране цветного телевизора можно получать и черно-белые изображения.


(ТК-1) Первый телевизор индивидуального пользования КВН-49 Телерадиола "Беларусь-5" г Цветные телевизоры «Минск» и «Радуга»


Заключение В заключении хочется сказать, что было изучено достаточно большое количество научно-популярной литературы, а так же энциклопедии и справочники. Подробно был изучен принцип радиосвязи, процессы амплитудной модуляции и детектирования. Исходя из изученного можно сделать следующие выводы: Радио в жизни человечества в XX веке сыграло огромную роль. Оно занимает важное место в хозяйстве любой страны. Благодаря изобретению радио в XX веке получили огромное развитие разнообразные средства связи. Ученые всего мира, в том числе российские и советские, продолжают совершенствовать современные средства связи. И без изобретения радио это вряд ли было бы возможно. Уже к 2014 году в нашей стране будет введено передача информации при помощи цифровой связи.


Список литературы 1. И.В.Бренев "Изобретение радио А.С.Поповым" МОСКВА "Советское радио" Б.Б.Буховцев, Г.Я.Мякишев "Физика. Учебник для 11 класса общеобразовательных учреждений" Москва "Просвещение" е издание 3. В.С. Виргинский, В.Ф. Хотеенков "Очерки истории и науки техники гг." МОСКВА "Просвещение" Ф.М.Дягилев "Из истории физики и жизни её творцов" МОСКВА "Просвещение" О.Ф.Кабардин, А.А.Пинский "Физика 11 класс. Учебник для общеобразовательных учреждений и школ с углубленным изучением физики" Москва "Просвещение" е издание 6. В.П.Орехов "Колебания и волны в курсе физики средней школы" Москва "Просвещение"1977 г. 7. Попов В.И. Основы сотовой связи стандарта GSM ("Инженерная энциклопедия ТЭК"). М., "Эко-Трендз", 2005

Цели урока: Ознакомиться с практическим применением электромагнитных волн; Изучить физический принцип радиотелефонной связи.

План урока: Изобретение радио А.С. Поповым Радиотелефонная вязь Модуляция Детектирование Блок-схема «Принципы радиосвязи» Простейший детекторный приёмник

Радио А. С. Попова Когерер – стеклянная трубка с двумя электродами, в ней помещены металлические опилки. Когерер (от лат. - “когеренция” - “сцепление”). Звонок – для регистрации волн и для встряхивания когерера. Чтобы повысить чувствительность аппарата, А.С. Попов один из выводов когерера заземлил. Заземление превращает проводящую поверхность земли в часть открытого колебательного контура, что увеличивает дальность приема. Другой вывод присоединил к высоко поднятому куску проволоки, создав первую приемную антенну для беспроволочной связи.

7 мая 1895 г. на заседании Русского физико-химического общества в Петербурге А. С. Попов продемонстрировал действие своего прибора – первого в мире радиоприёмника

Радиосвязь Определение. Радиосвязь – передача и приём информации с помощью радиоволн, распространяющихся в пространстве без проводов. Источник – переменный ток частоты от 2 · 10 4 Гц до 10 9 Гц (λ =0,3 м – 1,5 · 10 4 м).

Виды радиосвязи: Радиотелеграфная связь Радиотелефонная связь Радиовещание Телевидение Радиолокация Отличаются типом кодирования передаваемого сигнала.

Радиотелефонная связь – передача речи или музыки с помощью ЭМВ. При радиотелефонной связи колебания давления воздуха в звуковой волне превращаются с помощью микрофона в электрические колебания той же формы. Но колебания звуковой частоты представляют собой сравнительно медленные колебания, а ЭМВ низкой (звуковой) частоты почти не излучаются. Чтобы осуществить радиотелефонную связь необходимо использовать высокочастотные колебания, интенсивно излучаемые антенной (используют генератор). Для передачи звука эти высокочастотные колебания изменяют (модулируют) с помощью электрических колебаний низкой (звуковой) частоты. Для приёма из модулированных колебаний высокой частоты выделяют низкочастотные колебания – детектируют.

Модуляция передаваемого сигнала – кодированное изменение одного из параметров (амплитуды, частоты).

Детектирование – процесс выделения из амплитудно-модулированных колебаний низкочастотных колебаний.

Блок-схема «Принципы радиосвязи»

Простейший радиоприёмник Приёмная антенна – для улавливания ЭМВ. Заземление - для увеличения дальности приёма. Колебательный контур – для настройки на частоту определённой радиостанции. Громкоговоритель – превращает колебания тока низкой частоты в колебания воздуха той же частоты. Конденсатор – фильтр, для сглаживания пульсации тока. 1 2 3 4 5 6

Слайд 1

Принцип радиосвязи

Афанасьева Нина Петровна МОУ Уканская средняя школа

Слайд 2

Радиосвязь – передача и прием информации с помощью радиоволн, распространяющихся в пространстве без проводов.

Слайд 3

Виды радиосвязи Радиотелеграфная Радиовещание Телевидение Радиолокация Радиотелефонная

Слайд 6

Опыты Герца, описание которых появилось в 1888 году, заинтересовали физиков всего мира. Ученые стали искать пути усовершенствования излучателя и приемника электромагнитных волн. В России одним из первых занялся изучением ЭМВ преподаватель офицерских курсов в Кронштадте Александр Степанович Попов. Начав с воспроизведения опытов Герца, он затем использовал более надежный и чувствительный способ регистрации ЭМВ.

Слайд 7

Исследования относятся к различным проблемам электротехники и радиотехники, в частности радиосвязи. Попов построил чувствительный приемник, пригодный для беспроводной сигнализации (радиосвязи). В первых опытах по радиосвязи, проведенных в физическом кабинете, а затем в саду Минного офицерского класса, приёмник обнаруживал излучение радиосигналов, посылаемых передатчиком, на расстоянии до 60 м. При проведении опытов Попов заметил, что подсоединение к когереру вертикального металлического провода (антенны) приводило к увеличению расстояния уверенного приема. Попов занимался изучением рентгеновских лучей, им сделаны первые в России рентгеновские снимки предметов и конечностей человека.

Слайд 8

7 Мая 1895 года на заседании Русского физико-химического общества в Петербурге А.С.Попов продемонстрировал действие своего прибора, явившегося, по сути дела, первым в мире радиоприемником. День 7 мая стал днем рождения радио. Ныне он ежегодно отмечается в нашей стране. Попов продолжал настойчиво совершенствовать приемную и передающую аппаратуру. Он ставил своей задачей построить прибор для передачи сигналов на большие расстояния. Вначале радиосвязь была установлена на расстоянии 250 м., затем более 600 м. Затем на маневрах Черноморского флота в 1899 ученый установил радиосвязь на расстоянии 20 км, а в 1901 году дальность была уже 150 км. В 1899 была обнаружена возможность приема сигналов с помощью телефона.

Слайд 11

ГВЧ МУ М Перед. антенна Прием. антенна Приемный контур громкоговоритель

Основные принципы радиосвязи

Слайд 13

Преобразование звукового сигнала в электрические колебания низкой частоты

Слайд 14

Схема автогенератора на транзисторе для амплитудной модуляции

Слайд 16

Схема детектора


  • Радиосвязь – передача и прием информации с помощью радиоволн, распространяющихся в пространстве без проводов.

Радиолокация

Радиотелефонная

Виды радиосвязи

Радиотелеграфная

Радиовещание

Телевидение


  • Попов Александр Степанович , русский физик и электротехник, изобретатель электрической связи без проводов (радиосвязи, радио). В 1882 окончил физико-математический факультет Петербургского университета и был оставлен в нём для подготовки к научной деятельности.


  • Первые научные исследования Попова были посвящены анализу наивыгоднейшего действия динамоэлектрических машины (1883) и индукционным весам Юза (1884). После опубликования (1888) работ Г. Герца по электродинамике Попов стал изучать электромагнитные явления и прочитал серию публичных лекций на тему «Новейшие исследования о соотношении между световыми и электрическим явлениями». Пытаясь найти способ эффективной демонстрации опытов Герца перед большой аудиторией, Попов занялся конструированием более наглядного индикатора электромагнитных волн (ЭВ), излучаемых Герца вибратором .

Для получения электромагнитных волн Генрих Герц использовал простейшее устройство, называемое вибратором Герца. Это устройство представляет собой открытый колебательный контур.





  • Схема радиоприёмника
  • А. С. Попова:
  • М и N - держатели, к которым посредством лёгкой часовой пружины подвешен когерер;
  • А и В - платиновые пластинки когерера, к которым через поляризованное реле (Релэ) постоянно подводится напряжение электрической батареи (Р-Q).



Принцип радиосвязи заключается в том, что созданный электрический ток высокой частоты , созданный в передающей антенне, вызывает в окружающем пространстве быстроменяющееся электромагнитное поле , которое распространяется в виде электромагнитной волны .


Основные принципы радиосвязи

Приемный контур

громкоговоритель

Перед. антенна

Прием. антенна


Основные принципы радиосвязи. Блок – схема.


Задающий генератор(ГВЧ) вырабатывает гармонические колебания ВЧ.

Микрофон преобразовывает механические звуковые колебания в электрические той же частоты.

Модулятор изменяет(модулирует) по частоте или амплитуде ВЧ колебания с помощью электрических колебаний низкой частоты НЧ.

Усилители высокой и низкой частоты УВЧ и УНЧ усиливают по мощности высокочастотные и низкочастотные электрические колебания.

Передающая антенна излучает модулированные электромагнитные волны.

Приемная антенна принимает электромагнитные волны. Электромагнитная волна, достигая приемной антенны, индуцирует в ней переменный ток той же частоты, на которой работает передатчик.

Детектор выделяет из модулированных высокочастотных колебаний низкочастотные колебания.

Динамик преобразует электромагнитные колебания в механические звуковые колебания.





  • В 1899 П. Н. Рыбкин и Д. С. Троицкий - помощники Попова - обнаружили детекторный эффект когерера. На основе этого эффекта Попов построил «телефонный приёмник депеш» для слухового приёма радиосигналов (на головные телефоны) и запатентовал его (Русская привилегия № 6066 от 1901). Приёмники этого типа выпускались в 1899-1904 в России и во Франции (фирма «Дюкрете») и широко использовались для радиосвязи. В начале 1900 приборы Попова были применены для связи во время работ по ликвидации аварии броненосца «Генерал-адмирал Апраксин» у острова Гогланд и при спасении рыбаков, унесённых на льдине в море. При этом дальность связи достигла 45 км. В 1901 Попов в реальных корабельных условиях получил дальность связи 148-150 км.

  • Когда работы по применению радиосвязи на кораблях привлекли к себе внимание заграничных деловых кругов, Попов получил ряд предложений переехать для работы за границу. Он решительно отверг их. Вот его слова:
  • « Я горд тем, что родился русским. И если не современники, то, может быть, потомки наши поймут, сколь велика моя преданность нашей родине и как счастлив я, что не за рубежом, а в России открыто новое средство связи ».


Радиолокация – обнаружение объектов и определение их координат с помощью отражения радиоволн.

Радиолокаторы используются для определения расстояния и обнаружения самолетов, кораблей, скопления облаков, локации планет, в космических исследованиях. С помощью радиолокации определяют скорости орбитального движения планет, а также скорости их вращения вокруг своей оси.



Развитие современных средств связи

Средства связи - технические и программные средства, используемые для формирования, приема, обработки, хранения, передачи, доставки сообщений электросвязи или почтовых отправлений, а также иные технические и программные средства, используемые при оказании услуг связи или обеспечении функционирования сетей связи.

виды связи П роводные (телефонные, телеграфные и т.п.) Беспроводные, в которых, в свою очередь, выделяют: радио (всенаправленные, узконаправленные, сотовые и иные радио системы), радиорелейные и космические (спутниковые) устройства, системы и комплексы.

Средства коммуникации. Первый – появление устной речи. Ученые обозначили пять мощнейших толчков, ускоривших развитие человечества, которые получила культура за время ее существования:

Второй– изобретение письменности, позволившей человеку вступать в коммуникацию с другими людьми, не находящимися с ним в непосредственном контакте.

Третий – появление и распространение книгопечатания.

Четвертый – возникновение электронных средств массовой коммуникации, которые предоставили возможность каждому стать непосредственным свидетелем и участником историко-культурного процесса, происходящего во всем мире. Радио Телевидение

Пятый, по оценкам многих специалистов, – возникновение и развитие сети Интернет, как нового средства коммуникации, предоставившего широкие возможности в формах и способах получения и передачи информации, а также осуществлении множества других функций.

Этапы развития средств связи Создание оптического телеграфа - устройства для передачи информации на дальние расстояния при помощи световых сигналов. Изобрел эту систему француз Клод Шапп.

Связь по проводам. Первый электрический телеграф создали в 1837 г. английские изобретатели: Уильям Кук Чарльз Уэтсоун

Поздняя модель телеграфа Кука и Уэтстоуна. Сигналы приводили в действие стрелки на приемнике, которые указывали на разные буквы и таким образом передавали сообщение.

Код Морзе В 1843 г. американский художник Сэмюэл Морзе - изобрел новый телеграфный код, заменивший код Кука и Уэтстоуна. Он разработал для каждой буквы знаки из точек и тире.

А Чарльз Уэтстоун создал систему, в которой оператор с помощью кода Морзе набивал сообщения на длинной бумажной ленте, поступавшей в телеграфный аппарат. На другом конце провода самописец набивал принятое сообщение на другую бумажную ленту. Впоследствии самописец заменили сигнализатором, преобразовавшим точки и тире в долгие и краткие звуки. Операторы слушали сообщения и записывали их перевод.

Изобретение первого телефона. Александр Грейам Белл (1847-1922)совместно с Томасом Уотсоном (1854 – 1934) сконструировали прибор, состоящий из передатчика (микрофона) и приемника (динамика).Микрофон и динамик были устроены одинаково В микрофоне голос говорившего заставлял колебаться мембрану, вызывая колебания электрического тока. В динамике ток поступал на мембрану, заставляя ее колебаться и воспроизводить звуки человеческого голоса. П ервый телефонный разговор состоялся 10 марта 1876 г.

Изобретение радио. Создатель радио Александр Степанович Попов (1859-1906). 7 мая 1895 года Попов продемонстрировал изобретённый им радиоприёмник на заседании физического отделения Русского физико-химического общества. Разновидность беспроводной связи, при которой в качестве носителя сигнала используются радиоволны, свободно распространяемые в пространстве.

Спутниковая связь. Спутники – беспилотные космические аппараты, летающие по орбите вокруг Земли. Они могут передавать телефонные разговоры и телевизионные сигналы в любую точку мира. Они также передают информацию о погоде и навигации. В 1957 году в СССР был запущен «Спутник – 1» - первый в мире искусственный спутник Земли.

В 1960 г. В США были запущены спутники «Курьер» и «Эхо». Они передали первые телефонные разговоры между США и Европой. В 1962г в США на орбиту вышел « Телстар » - первый телевизионный спутник.

Волоконно-оптические линии связи. Волоконно-оптические линии связи (ВОЛС) в настоящее время считаются самой совершенной физической средой для передачи информации. Передача данных в оптическом волокне основана на эффекте полного внутреннего отражения. Таким образом, оптический сигнал, передаваемый лазером с одной стороны, принимается с другой, значительно удаленной стороной. На сегодняшний день построено и строится огромное количество магистральных оптоволоконных колец, внутригородских и даже внутриофисных.

Лазерная система связи Довольно любопытное решение для качественной и быстрой сетевой связи разработала немецкая компания Laser2000. Две представленные модели на вид напоминают самые обычные видеокамеры и предназначены для связи между офисами, внутри офисов и по коридорам. Проще говоря, вместо того, чтобы прокладывать оптический кабель, надо всего лишь установить изобретения от Laser2000. Однако, на самом-то деле, это не видеокамеры, а два передатчика, которые осуществляют между собой связь посредством лазерного излучения. Напомним, что лазер, в отличие от обычного света, например, лампового, характеризуется монохроматичностью и когерентностью, то есть лучи лазера всегда обладают одной и той же длиной волны и мало рассеиваются.

Ссылки на источники информации и изображений: www.digimedia.ru/articles/svyaz/setevye-tehnologii/istoriya/faks-istoriya-ofisnogo-vorchuna/ http://ru.wikipedia.org/wiki/%D0%9F%D0%BE%D0%BF%D0%BE%D0%B2,_%D0%90%D0%BB%D0%B5%D0%BA%D1%81%D0%B0%D0%BD%D0%B4%D1%80_%D0%A1%D1%82%D0%B5%D0%BF%D0%B0%D0%BD%D0%BE%D0%B2%D0%B8%D1%87 http://geniusweb.ru/?feed=rss2 ru.wikipedia.org/wiki/ Радио http://www.5ka.ru/88/19722/1.html